By Topic

Statistical emission image reconstruction for randoms-precorrected PET scans using negative sinogram values

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sangtae Ahn ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Fessler, J.A.

Many conventional PET emission scans are corrected for accidental coincidence (AC) events, or randoms, by real-time subtraction of delayed-window coincidences, leaving only the randoms-precorrected data available for image reconstruction. The real-time precorrection compensates in mean for AC events but destroys Poisson statistics. Since the exact log-likelihood for randoms-precorrected data is inconvenient to maximize, practical approximations are desirable for statistical image reconstruction. Conventional approximations involve setting negative sinogram values to zero, which can induce positive systematic biases, particularly for scans with low counts per ray. We propose new likelihood approximations that allow negative sinogram values without requiring zero-thresholding. We also develop monotonic algorithms for the new models by using "optimization transfer" principles. Simulation results show that our new model, SP-, is free of systematic bias yet keeps low variance. Despite its simpler implementation, the new model performs comparably to the saddle-point (SD) model which has previously shown the best performance (as to systematic bias and variance) in randoms-precorrected PET emission reconstruction.

Published in:

Nuclear Science Symposium Conference Record, 2003 IEEE  (Volume:5 )

Date of Conference:

19-25 Oct. 2003