By Topic

Two hierarchy classifier for recognition of traffic signs based on neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shuangdong Zhu ; Fac. of Information Sci. & Technol., Ningbo Univ., China

The BP networks have the ability of nonlinear mapping, so they are widely used in pattern recognition and classification. However, BP networks need to be trained again when the training set is changed. Meanwhile, the larger the network is, the slower convergence rate is, and the poorer result of classification and recognition is. So, two-hierarchy neural network classifier for recognition of traffic signs is presented: the first hierarchy classification which consists of a single BP network is used to coarsely classify indicative signs, warning signs and prohibitive signs; the second hierarchy classification including of three BP networks is designed to concretely identify each traffic signs. The simulation results show that the correctness of recognition and classification is up to 100% for testing set with white Gaussian noise. To reduce the scale of the first classification training set and improve the adaptability of training set, two incomplete training set are used: (a) taking part of samples as training set, and (b) obtaining smaller training set by artificial selection. The two-hierarchy neural network classifier and incomplete training set could improve the convergence rate and identification ability; meanwhile it is proved that the first hierarchy classification is robust to the training set.

Published in:

Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on  (Volume:6 )

Date of Conference:

15-19 June 2004