By Topic

Face classification with support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kepenekci, B. ; Elektrik ve Elektron. Muhendisligi Bolumu, Orta Dogu Teknik Univ., Ankara, Turkey ; Akar, G.B.

A new approach to feature based frontal face recognition with Gabor wavelets and support vector machines is presented in this paper. The feature points are automatically extracted using the local characteristics of each individual face. A kernel that computes the similarity between two feature vectors, is used to map the face features to a space with higher dimension. To find the identity of a test face, the possible labels of each feature vector of that face is found with support vector machines, then the last decision is made by considering all of those labels. By using Gabor features the number of support vectors is reduced compared to directly using the actual image data, and also a better generalization performance is achieved.

Published in:

Signal Processing and Communications Applications Conference, 2004. Proceedings of the IEEE 12th

Date of Conference:

28-30 April 2004