By Topic

Composite right/left-handed transmission line metamaterials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Lai ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; T. Itoh ; C. Caloz

Metamaterials are artificial structures that can be designed to exhibit specific electromagnetic properties not commonly found in nature. Recently, metamaterials with simultaneously negative permittivity (/spl epsiv/) and permeability (μ), more commonly referred to as left-handed (LH) materials, have received substantial attention in the scientific and engineering communities. The unique properties of LHMs have allowed novel applications, concepts, and devices to be developed. In this article, the fundamental electromagnetic properties of LHMs and the physical realization of these materials are reviewed based on a general transmission line (TL) approach. The general TL approach provides insight into the physical phenomena of LHMs and provides an efficient design tool for LH applications. LHMs are considered to be a more general model of composite right/left hand (CRLH) structures, which also include right-handed (RH) effects that occur naturally in practical LHMs. Characterization, design, and implementation of one-dimensional and two-dimensional CRLH TLs are examined. In addition, microwave devices based on CRLH TLs and their applications are presented.

Published in:

IEEE Microwave Magazine  (Volume:5 ,  Issue: 3 )