By Topic

A flexible similarity measure for 3D shapes recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Adan ; Departamento de IEE y Autom., Univ. de Castilla La Mancha, Ciudad Real, Spain ; M. Adan

This paper is devoted to presenting a new strategy for 3D objects recognition using a flexible similarity measure based on the recent modeling wave (MW) topology in spherical models. MW topology allows us to establish an n-connectivity relationship in 3D objects modeling meshes. Using the complete object model, a study on considering different partial information of the model has been carried out to recognize an object. For this, we have introduced a new feature called cone-curvature (CC), which originates from the MW concept. CC gives an extended geometrical surroundings knowledge for every node of the mesh model and allows us to define a robust and adaptable similarity measure between objects for a specific model database. The defined similarity metric has been successfully tested in our lab using range data of a wide variety of 3D shapes. Finally, we show the applicability of our method presenting experimentation for recognition on noise and occlusion conditions in complex scenes.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 11 )