By Topic

Convolutional face finder: a neural architecture for fast and robust face detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garcia, C. ; France Telecom R&D, Cesson Sevigne, France ; Delakis, M.

In this paper, we present a novel face detection approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns, rotated up to ±20 degrees in image plane and turned up to ±60 degrees, in complex real world images. The proposed system automatically synthesizes simple problem-specific feature extractors from a training set of face and nonface patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas of the face pattern to analyze. The face detection procedure acts like a pipeline of simple convolution and subsampling modules that treat the raw input image as a whole. We therefore show that an efficient face detection system does not require any costly local preprocessing before classification of image areas. The proposed scheme provides very high detection rate with a particularly low level of false positives, demonstrated on difficult test sets, without requiring the use of multiple networks for handling difficult cases. We present extensive experimental results illustrating the efficiency of the proposed approach on difficult test sets and including an in-depth sensitivity analysis with respect to the degrees of variability of the face patterns.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:26 ,  Issue: 11 )