By Topic

Efficient model creation of large structures based on range segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stamos, I. ; Dept. of Comput. Sci., City Univ. of New York, NY, USA ; Leordeanu, M.

This work describes an efficient 3D modeling method from 3D range data-sets that is utilizing range data segmentation. Our algorithm starts with a set of unregistered 3D range scans of a large scale scene. The scans are being preprocessed for noise removal and hole filling. The next step is range segmentation and the extraction of planar and linear features. These features are utilized for the automatic registration of the range scans into a common frame of reference [I. Stamos et al, (2003)]. A volumetric-based algorithm is used for the construction of a coherent 3D mesh that encloses all range scans. Finally, the original segmented scans are used in order to simplify the constructed mesh. The mesh can now be represented as a set of planar regions at areas of low complexity and as a set of dense mesh triangular elements at areas of high complexity. This is achieved by computing the overlaps of the original segmented planar areas on the generated 3D mesh. The example of the construction of the 3D model of a building in the NYC area is presented.

Published in:

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on

Date of Conference:

6-9 Sept. 2004