Cart (Loading....) | Create Account
Close category search window
 

A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 μm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo-Cai Gao ; Remote Sensing Div., Naval Res. Lab., Washington, DC, USA ; Meyer, K. ; Ping Yang

Techniques for retrieving cloud optical properties, i.e., the optical depths and particle size distributions, using atmospheric "window" channels in the visible and near-infrared spectral regions are well established. For partially transparent thin cirrus clouds, these "window" channels receive solar radiances scattered by the surface and lower level water clouds. Accurate retrieval of optical properties of thin cirrus clouds requires proper modeling of the effects from the surface and the lower level water clouds. In this paper, we describe a new concept using two strong water vapor absorption channels near 1.38 and 1.88 μm, together with one window channel, for remote sensing of cirrus optical properties. Both the 1.38- and 1.88-μm channels are highly sensitive in detecting the upper level cirrus clouds. Both channels receive little scattered solar radiances from the surface and lower level water clouds because of the strong water vapor absorption below cirrus. The 1.88-μm channel is quite sensitive to changes in ice particle size distributions, while the 1.38-μm channel is less sensitive. These properties allow for simultaneous retrievals of optical depths and particle size distributions of cirrus clouds with minimal contaminations from the surface and lower level water clouds. Preliminary tests of this new concept are made using hyperspectral imaging data collected with the Airborne Visible Infrared Imaging Spectrometer. The addition of a channel near 1.88 μm to future multichannel meteorological satellite sensors would improve our ability in global remote sensing of cirrus optical properties.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.