Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Low-cost test of embedded RF/analog/mixed-signal circuits in SOPs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Akbay, S.S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Halder, A. ; Chatterjee, A. ; Keezer, D.

Increasing levels of integration and high speeds of operation have made the problem of testing complex systems-on-packages (SOPs) very difficult. Testing packages with multigigahertz RF and optical components is even more difficult as external tester costs tend to escalate rapidly beyond 3 GHz. The extent of the problem can be gauged by the fact that test cost is approaching almost 40% of the total manufacturing cost of these packages. To alleviate test costs, various solutions relying on built-off test (BOT) and built-in test (BIT) of embedded high-speed components of SOPs have been developed. These migrate some of the external tester functions to the tester load board (BOT) and to the package and the die encapsulated in the package (BIT) in an "intelligent" manner. This paper provides a discussion of the emerging BOT and BIT schemes for embedded high-speed RF/analog/mixed-signal circuits in SOPs. The pros and cons of each scheme are discussed and preliminary available data on case studies are presented.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:27 ,  Issue: 2 )