By Topic

Performance models for evaluation and automatic tuning of symmetric sparse matrix-vector multiply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, B.C. ; Div. of Comput. Sci., California Univ., Berkeley, CA, USA ; Vuduc, R.W. ; Demmel, J.W. ; Yelick, K.A.

We present optimizations for sparse matrix-vector multiply SpMV and its generalization to multiple vectors, SpMM, when the matrix is symmetric: (1) symmetric storage, (2) register blocking, and (3) vector blocking. Combined with register blocking, symmetry saves more than 50% in matrix storage. We also show performance speedups of 2.1× for SpMV and 2.6× for SpMM, when compared to the best nonsymmetric register blocked implementation. We present an approach for the selection of tuning parameters, based on empirical modeling and search that consists of three steps: (1) Off-line benchmark, (2) Runtime search, and (3) Heuristic performance model. This approach generally selects parameters to achieve performance with 85% of that achieved with exhaustive search. We evaluate our implementations with respect to upper bounds on performance. Our model bounds performance by considering only the cost of memory operations and using lower bounds on the number of cache misses. Our optimized codes are within 68% of the upper bounds.

Published in:

Parallel Processing, 2004. ICPP 2004. International Conference on

Date of Conference:

15-18 Aug. 2004