By Topic

Achieving performance consistency in heterogeneous clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Changxun Wu ; Dept. of Comput. Sci., Johns Hopkins Univ., MD, USA ; R. Burns

Hash-based randomization is a powerful technique used in clusters and distributed systems for load management. It offers uniform distribution, efficient addressing, little shared state, and scalability. However, simple hash-based randomization is unable to deal with skew and heterogeneity and, therefore, cannot achieve load balance in many environments. Virtual processors have been proposed as a solution to simple randomization's problem. We evaluate an alternative load management scheme for heterogeneous, shared-disk clusters. Our scheme directly tunes hash-based randomized load placement using a technique called adaptive, nonuniform (ANU) randomization [2003] and compares favorably to the virtual processor approach. It provides the load balancing benefits of virtual processors with less shared state. It also automatically adapts to workload and cluster configuration changes, such as failure and recovery and adding or removing servers, without human involvement. Experimental results show that our scheme outperforms virtual processors and performs comparably to prescient load-balancing algorithms. They also show that our system maintains consistent performance across all servers while moving a minimal amount of load.

Published in:

High performance Distributed Computing, 2004. Proceedings. 13th IEEE International Symposium on

Date of Conference:

4-6 June 2004