Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Echo cancellation in DMT-receivers: circulant decomposition canceler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ysebaert, G. ; Katholieke Univ. Leuven, Belgium ; Pisoni, F. ; Bonaventura, M. ; Hug, R.
more authors

Asymmetric digital subscriber lines (ADSLs) employ discrete multitone modulation (DMT) as transmission format, where subcarriers are assigned to the up- and/or downstream transmission direction. To separate up- and downstream signals, the ADSL standard allows the use of echo cancellation resulting in improved bit rates, reach, and/or noise margins. In DMT-based modems, typically, the mixed time/frequency (MTF) domain echo canceling scheme, as proposed by Ho et al., is implemented. This technique estimates the echo filter in the frequency domain using the least mean square (LMS) algorithm with the transmitted echo symbols as update directions. Since not every tone of the transmitted echo signal will carry data, i.e., will be excited, the MTF adaptation process does not lead to a good estimate for the echo channel, unless extra power on unused echo tones is transmitted. However, transmitting extra power on such tones is often undesired. In this paper, we present an alternative echo canceling scheme referred to as the circulant decomposition canceler (CDC), which works without extra power requirements and with comparable complexity as the method of Ho et al. Similar to MTF echo canceling, the CDC scheme can easily be incorporated into a multirate environment with different transmit and receive rates and can also cheaply be combined with per-tone equalization and double talk cancellation to allow fast tracking and/or convergence in the presence of a far-end signal.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )