By Topic

Gain-scheduled filtering for time-varying discrete systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hoang, N.T. ; Dept. of Electron.-Mech. Eng., Nagoya Univ., Japan ; Hoang Duong Tuan ; Apkarian, P. ; Hosoe, S.

This paper deals with the design of gain-scheduled filters, whose state-space realization depends on real-time parameters of plants. Similar to well-recognized advantages of gain-scheduled controllers in control theory, gain-scheduled filters are expected to provide enhanced performance in comparison with customary nonadjustable filters. Our construction technique is based on nonlinear fractional transformation (NFT) representations of systems that are a generalization of widely used linear fractional transformation (LFT) representations. Both generalized H2 and H discrete-time filter design problems are investigated together with their extension to mixed designs. This study leads to new linear matrix inequality (LMI) formulations, which in turn provide an effective and reliable design tool. The proposed design technique is finally evaluated in the light of simulation examples.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 9 )