Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hardie, R.C. ; Comput. Eng. & Electro-Opt. Program, Univ. of Dayton, USA ; Eismann, M.T. ; Wilson, G.L.

This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchromatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 9 )