By Topic

Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hah, D. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Patterson, P.R. ; Nguyen, H.D. ; Toshiyoshi, H.
more authors

We report on the theory and experiments of scanning micromirrors with angular vertical comb-drive (AVC) actuators. Parametric analyses of rotational vertical comb-drive actuators using a hybrid model that combines two-dimensional finite-element solutions with analytic formulations are described. The model is applied to both AVC and staggered vertical comb-drive (SVC) actuators. Detailed design tradeoffs and conditions for pull-in-free operations are discussed. Our simulation results show that the fringe fields play an important role in the estimation of maximum continuous rotation angles, particularly for combs with thin fingers, and that the maximum scan angle of the AVC is up to 60% larger than that of the SVC. Experimentally, a large dc continuous scan angle of 28.8° (optical) has been achieved with a moderate voltage (65 V) for a 1-mm-diameter scanning micromirror with AVC actuators. Excellent agreement between the experimental data and the theoretical simulations has been obtained.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 3 )