By Topic

Neuro-fuzzy control of a robotic exoskeleton with EMG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiguchi, Kazuo ; Dept. of Adv. Syst. Control Eng., Saga Univ., Japan ; Tanaka, T. ; Fukuda, T.

We have been developing robotic exoskeletons to assist motion of physically weak persons such as elderly, disabled, and injured persons. The robotic exoskeleton is controlled basically based on the electromyogram (EMG) signals, since the EMG signals of human muscles are important signals to understand how the user intends to move. Even though the EMG signals contain very important information, however, it is not very easy to predict the user's upper-limb motion (elbow and shoulder motion) based on the EMG signals in real-time because of the difficulty in using the EMG signals as the controller input signals. In this paper, we propose a robotic exoskeleton for human upper-limb motion assist, a hierarchical neuro-fuzzy controller for the robotic exoskeleton, and its adaptation method.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )