By Topic

Real-time nonintrusive monitoring and prediction of driver fatigue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiang Ji ; Dept. of Electr., Rensselaer Polytech. Inst., Troy, NY, USA ; Zhiwei Zhu ; P. Lan

This paper describes a real-time online prototype driver-fatigue monitor. It uses remotely located charge-coupled-device cameras equipped with active infrared illuminators to acquire video images of the driver. Various visual cues that typically characterize the level of alertness of a person are extracted in real time and systematically combined to infer the fatigue level of the driver. The visual cues employed characterize eyelid movement, gaze movement, head movement, and facial expression. A probabilistic model is developed to model human fatigue and to predict fatigue based on the visual cues obtained. The simultaneous use of multiple visual cues and their systematic combination yields a much more robust and accurate fatigue characterization than using a single visual cue. This system was validated under real-life fatigue conditions with human subjects of different ethnic backgrounds, genders, and ages; with/without glasses; and under different illumination conditions. It was found to be reasonably robust, reliable, and accurate in fatigue characterization.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:53 ,  Issue: 4 )