By Topic

Reduction of boron diffusion in silicon-germanium by fluorine implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mubarek, H.A.W.E. ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, UK ; Ashburn, P.

This letter investigates the effect of a 185 keV, 2.3 × 1015 cm-2 F+ implant on boron transient enhanced diffusion (TED) and boron thermal diffusion in SiGe by characterizing the diffusion of a boron marker layer in samples with and without a 288 keV, 6 × 1013 cm-2 P+ implant. In samples implanted with F+ only, the fluorine suppresses boron thermal diffusion by 58%. In samples given both P+ and F+ implants, the fluorine completely eliminates boron transient enhanced diffusion caused by the P+ implant and also significantly reduces boron thermal diffusion. SIMS profiles after anneal show a fluorine concentration in the SiGe layer that is approximately 8 × higher than after implant, indicating that fluorine accumulates in the SiGe layer during anneal. A comparison with fluorine profiles in comparable silicon samples also shows that the fluorine concentration after anneal is dramatically higher in SiGe samples than in Si samples. This accumulation of fluorine in the SiGe layer during anneal will have major benefits for boron diffusion suppression in devices like SiGe HBTs, where boron must be kept within the SiGe layer.

Published in:

Electron Device Letters, IEEE  (Volume:25 ,  Issue: 8 )