By Topic

Belief fusion, pignistic probabilities, and information content in fusing tracking attributes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
J. J. Sudano ; Lockheed Martin, Moorestown, NJ, USA

In the design of information fusion systems, the reduction of computational complexity is a key design parameter for real-time implementations. One way to simplify the computations is to decompose the system into subsystems of noncorrelated informational components, such as a qualitative informational component, a quantitative informational component, and a complement informational component. A probability information content (PIC) variable assigns an information content value to any set of system or sub-system probability distributions. The PIC variable is the normalized entropy computed from the probability distribution. This article derives a PIC variable for a subsystem represented by the complement probabilities. This article also derives a relationship between the PIC variable of sub-system components and the system informational PIC variable. A series of pignistic probability transforms are presented that estimate the probability for any belief data set. The generalized belief fusion method of combining independent multi-source beliefs is presented.

Published in:

Radar Conference, 2004. Proceedings of the IEEE

Date of Conference:

26-29 April 2004