By Topic

The case for lifetime reliability-aware microprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Srinivasan, J. ; Dept. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Adve, S.V. ; Bose, P. ; Rivers, J.A.

Ensuring long processor lifetimes by limiting failures due to wear-out related hard errors is a critical requirement for all microprocessor manufacturers. We observe that continuous device scaling and increasing temperatures are making lifetime reliability targets even harder to meet. However, current methodologies for qualifying lifetime reliability are overly conservative since they assume worst-case operating conditions. This paper makes the case that the continued use of such methodologies will significantly and unnecessarily constrain performance. Instead, lifetime reliability awareness at the microarchitectural design stage can mitigate this problem, by designing processors that dynamically adapt in response to the observed usage to meet a reliability target. We make two specific contributions. First, we describe an architecture-level model and its implementation, called RAMP, that can dynamically track lifetime reliability, responding to changes in application behavior. RAMP is based on state-of-the-art device models for different wear-out mechanisms. Second, we propose dynamic reliability management (DRM) - a technique where the processor can respond to changing application behavior to maintain its lifetime reliability target. In contrast to current worst-case behavior based reliability qualification methodologies, DRM allows processors to be qualified for reliability at lower (but more likely) operating points than the worst case. Using RAMP, we show that this can save cost and/or improve performance, that dynamic voltage scaling is an effective response technique for DRM, and that dynamic thermal management neither subsumes nor is subsumed by DRM.

Published in:

Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on

Date of Conference:

19-23 June 2004