By Topic

Small world overlay P2P networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui, K.Y.K. ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, China ; Lui, J.C.S. ; Yau, D.K.Y.

This paper considers the problem of how to construct and maintain an overlay structured P2P network based on the small world paradigm. Two main attractive properties of a small world network are (1) low average hop distance between any two randomly chosen nodes, and (2) high clustering coefficient of nodes. Having a low average hop distance implies a low latency for object lookup, while having a high clustering coefficient implies the underlying network can effectively provide object lookup even under heavy demands (for example, in a flash crowd scenario). We present a small world overlay protocol (SWOP) for constructing a small world overlay P2P network. We compare the performance of our system with that of other structured P2P networks such as Chord. We show that the SWOP protocol can achieve improved object lookup performance over the existing protocols. We also exploit the high clustering coefficient of a SWOP network to design an object replication algorithm that can effectively handle heavy object lookup traffic. As a result, a SWOP network can quickly and efficiently deliver popular and dynamic objects to a large number of requesting nodes. To the best of our knowledge, ours is the first piece of work that addresses how to handle dynamic flash crowds in a structured P2P network environment.

Published in:

Quality of Service, 2004. IWQOS 2004. Twelfth IEEE International Workshop on

Date of Conference:

7-9 June 2004