By Topic

Measuring the direction and the strength of coupling in nonlinear Systems-a modeling approach in the State space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Veeramani, B. ; Harrington Dept. of Bioeng., Arizona State Univ., Tempe, AZ, USA ; Narayanan, K. ; Prasad, A. ; Iasemidis, L.D.
more authors

We present a novel signal processing methodology to determine the direction and the strength of coupling between coupled nonlinear systems. The methodology is based on multivariate local linear prediction in the reconstructed state spaces of the observed variables from each multivariable nonlinear system. Application of the method is illustrated with systems of coupled Rossler and Lorenz oscillators in various coupling configurations. The obtained results are compared with ones produced by the use of the directed transfer function, a model-based method in the time domain. Through a surrogate analysis, it is shown that the proposed method is more reliable than the directed transfer function in identifying the direction and strength of the involved interactions.

Published in:

Signal Processing Letters, IEEE  (Volume:11 ,  Issue: 7 )