By Topic

Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gonzalez-Audicana, M. ; Dept. of Projects & Rural Eng., Public Univ. of Navarre, Pamplona, Spain ; Saleta, J.L. ; Catalan, R.G. ; Garcia, R.

Since Chavez proposed the highpass filtering procedure to fuse multispectral and panchromatic images, several fusion methods have been developed based on the same principle: to extract from the panchromatic image spatial detail information to later inject it into the multispectral one. In this paper, we present new fusion alternatives based on the same concept, using the multiresolution wavelet decomposition to execute the detail extraction phase and the intensity-hue-saturation (IHS) and principal component analysis (PCA) procedures to inject the spatial detail of the panchromatic image into the multispectral one. The multiresolution wavelet decomposition has been performed using both decimated and undecimated algorithms and the resulting merged images compared both spectral and spatially. These fusion methods, as well as standard IHS-, PCA-, and wavelet-based methods have been used to merge Systeme Pour l'Observation de la Terre (SPOT) 4 XI and SPOT 4 M images with a ratio 4:1. We have estimated the validity of each fusion method by analyzing, visually and quantitatively, the quality of the resulting fused images. The methodological approaches proposed in this paper result in merged images with improved quality with respect to those obtained by standard IHS, PCA, and standard wavelet-based fusion methods. For both proposed fusion methods, better results are obtained when an undecimated algorithm is used to perform the multiresolution wavelet decomposition.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )