Cart (Loading....) | Create Account
Close category search window

Wavelet-based coding of time-varying vector fields of ocean-surface winds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Hua ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA ; Fowler, J.E.

Geoscience applications often produce sizable datasets that are vector-valued and increasingly in need of compression algorithms to reduce storage and transmission burdens, particularly when the data are time-varying. In this paper, several advanced interframe-compression techniques are extended from the traditional realm of natural video to the coding of time-varying vector fields. Although similar to natural video in some respects, time-varying vector-field sequences often possess complex temporal evolution of vector-valued features that are important to the analytic quality of the data yet defy the simple motion models widely employed for natural video. To improve coding performance, motion compensation with reduced resolution is proposed such that motion compensation is applied only at low spatial resolution, while high-resolution information, for which the motion model fails, is intraframe coded with no temporal decorrelation. In empirical results on datasets of ocean-surface winds, this reduced-resolution motion-compensation technique results in significant performance improvement and greater feature preservation.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 6 )

Date of Publication:

June 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.