By Topic

Resolution depths for some transmitter-receiver configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. T. Smith ; Lawrence Berkeley Nat. Lab., CA, USA ; H. F. Morrison ; A. Becker

Equivalent dipole polarizability matrices and equivalent dipole location are a convenient way to interpret magnetic field data due to currents induced in isolated conductive objects. The uncertainties in polarizability estimates and in the equivalent dipole location provide a quantitative measure of the performance of different configurations of transmitters and receivers. In another paper, we estimate these uncertainties using a linearized inversion. For many systems, consisting of one or more rectangular loop transmitters and a number of dipole receivers, sited on a horizontal grid, equivalent dipole depth is determined to 10% accuracy to depths approximately 20% deeper than the depths at which polarizability matrix elements can be determined to the same precision. Systems that have a lower product of rms polarizability uncertainty and square root of their number of transmitter-receiver pairs are considered more effective for the number of transmitter-receiver pairs. Among the systems studied, a system with three orthogonal transmitter loops and a three-component receiver is the most effective, for objects shallower than 0.6 times the instrument siting grid spacing, yielding an rms polarizability uncertainty 0.04 times that of a single-transmitter single-receiver system. At intermediate depths, a system with two vertical component receivers on the diagonal of a square horizontal transmitter loop is most effective for its number of transmitter-receiver pairs, yielding an rms polarizability uncertainty 0.07 times that of a single receiver system. At depths greater than 2.5 times, the siting grid spacing a three-orthogonal loop transmitter with a single vertical component receiver is about the most effective for its number of transmitter-receiver pairs, yielding an rms polarizability uncertainty 0.08 times that of a single-transmitter system.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:42 ,  Issue: 6 )