Cart (Loading....) | Create Account
Close category search window
 

Calculating the 3d-pose of rigid-objects using active appearance models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mittrapiyanumic, P. ; School of Electrical and Computer Engineering, Purdue University ; DeSouza, G.N. ; Kak, A.C.

This paper presents two different algorithms for object tracking and pose estimation. Both methods are based on an appearance model technique called Active Appearance Model (AAM). The key idea of the first method is to utilize two instances of the AAM to track landmark points in a stereo pair of images and perform 3D reconstruction of the landmarks followed by 3 D pose estimation. The second method, the AAM matching algorithm is an extension of the original AAM that incorporates the full 6 DOF pose parameters as part of the minimization parameters. This extension allows for the estimation of the 3D pose of any object, without any restriction on its geometry. We compare both algorithms with a previously developed algorithm using a geometric-based approach [14]. The results show that the accuracy in pose estimation of our new appearance-based methods is better than using the geometric-based approach. Moreover, since appearance-based methods do not require customized feature extractions, the new methods present a more flexible alternative, especially in situations where extracting features is not simple due to cluttered background, complex and irregular features, etc.

Published in:

Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on  (Volume:5 )

Date of Conference:

April 26 2004-May 1 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.