By Topic

An ultrasonic profiling method for sewer inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
F. Gomez ; Dept. of Mechanical Eng., King's Coll. London, UK ; K. Althoefer ; L. D. Seneviratne

This paper presents a novel approach for the internal inspection of sewers through the use of sonar techniques, generating enhanced 3D graphs which represent the inner sewer surfaces. These graphs not only show the inner contour of the pipe but also integrate the intensity of the received echoes. The enhanced profile is generated by superimposing the peak intensity from the returning echoes at the calculated x, y and z coordinates where they are reflected from the pipe wall. These coordinates are calculated by measuring the time of flight of the first reflections, which are extracted from consecutives B-mode images generated during the ultrasonic scanning of the pipe. The proposed method has been capable of showing anomalous conditions, inside pipes filled with liquid, with dimensions smaller than the theoretical lateral and axial resolution of the transducer, in contrast to traditional methods where these kinds of defects were not detected. The proposed inspection method and its capabilities were validated through the realization of simulations and experiments. The simulations were conducted to validate the proposed method and explore its limitations. The proposed approach was particularly developed with the aim of scanning internal sections of sewers or water pipes filled with liquid using rotary ultrasonic sonars where visual methods could not be employed. It is expected that this research could also be expanded to the inspection of other submerged structures, such as water tanks, or pressurized vessels.

Published in:

Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on  (Volume:5 )

Date of Conference:

26 April-1 May 2004