By Topic

Hierarchical sensor data fusion by probabilistic cue integration for robust 3D object tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kahler, O. ; Comput. Vision Group, Passau Univ., Germany ; Denzler, J. ; Triesch, J.

Sensor data fusion from multiple cameras is an important problem for machine vision systems operating in complex, natural environments. We tackle the problem of how information from different sensors can be fused in 3D object tracking. We embed an approach called democratic integration into a probabilistic framework and solve the fusion step by hierarchically fusing the information of different sensors and different information sources (cues) derived from each sensor. We compare different fusion architectures and different adaptation schemes. The experiments for 3D object tracking using three calibrated cameras show that adaptive hierarchical fusion improves the tracking robustness and accuracy compared to a flat fusion strategy.

Published in:

Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on

Date of Conference:

28-30 March 2004