By Topic

Partially observed objects localization with PCA and KPCA models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We deal with the problem of partially observed objects. These objects are defined by sets of points and their shape variations are represented by a statistical model. We present two models: a linear model based on PCA and a non-linear model based on KPCA (kernel PCA). The present work attempts to localize non visible parts of an object from visible parts and from the model, explicitly. using the variability represented by the model. Both are applied to the cephalometric problem with good results.

Published in:

Image Analysis and Interpretation, 2004. 6th IEEE Southwest Symposium on

Date of Conference:

28-30 March 2004