By Topic

Approximation algorithms design for disk partial covering problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bin Xiao ; Dept. of Comput., Hong Kong Polytech. Univ., China ; Jiannong Cao ; Qingfeng Zhuge ; Yi He
more authors

Mobile servers are established to provide services for mobile nodes in an anticipated area. If the distribution of mobile nodes can be foreseen, the location of mobile servers becomes critical to the QoS of wireless systems. Under resource and topology constraints, it is very difficult to figure out a solution, or unable to cover all given mobile nodes within limited number of mobile servers. In this paper, we study the issue of the partial covering problem such that part of mobile nodes to be covered. Several approximation algorithms are proposed to cover the maximum number of elements. For real time systems, such as the battlefield communication system, the proposed algorithms with polynomial-time complexity can be efficiently applied. The algorithm complexity analysis illustrates the improvement made by our algorithms. The experimental results show that the performance of our algorithms is much better than other existing 3-approximation algorithm for the robust k-center problem.

Published in:

Parallel Architectures, Algorithms and Networks, 2004. Proceedings. 7th International Symposium on

Date of Conference:

10-12 May 2004