Cart (Loading....) | Create Account
Close category search window
 

Classification of contamination in salt marsh plants using hyperspectral reflectance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilson, M.D. ; Savannah River Ecology Lab., Aiken, SC, USA ; Ustin, L. ; Rocke, D.M.

In this paper, we compare the classification effectiveness of two relatively new techniques on data consisting of leaf-level reflectance from five species of salt marsh and two species of crop plants (in four experiments) that have been exposed to varying levels of different heavy metal or petroleum toxicity, with a control treatment for each experiment. If these methodologies work well on leaf-level data, then there is hope that they will also work well on data from air- and spaceborne platforms. The classification methods compared were support vector classification (SVC) of exposed and nonexposed plants based on the spectral reflectance data, and partial least squares compression of the spectral reflectance data followed by classification using logistic discrimination (PLS/LD). The statistic we used to compare the effectiveness of the methodologies was the leave-one-out cross-validation estimate of the prediction error. Our results suggest that both techniques perform reasonably well, but that SVC was superior to PLS/LD for use on hyperspectral data and it is worth exploring as a technique for classifying heavy-metal or petroleum exposed plants for the more complicated data from air- and spaceborne sensors.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 5 )

Date of Publication:

May 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.