By Topic

Classification capacity of a modular neural network implementing neurally inspired architecture and training rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poirazi, P. ; Inst. of Molecular Biol. & Biotechnol., Crete, Greece ; Neocleous, C. ; Pattichis, C.S. ; Schizas, C.N.

A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab-but not between slabs- have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 3 )