By Topic

Decomposition of a bandpass signal and its applications to speech processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumaresan, R. ; Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA ; Allu, G.K. ; Swaminathan, J. ; Wang, Y.

We have developed a novel approach to speech feature extraction based on a modulation model of a band-pass signal. Speech is processed by a bank of band-pass filters. At the output of the band-pass filters the signal is subjected to a log-derivative operation which naturally decomposes the band-pass signal into analytic (called α˙(t)+jα˙ˆ(t)) and antianalytic (called β˙(t)-jβ˙ˆ(t)) components. The average instantaneous frequency (AIF) and average log-envelope (ALE) are then extracted as coarse features at the output of each filter. We indicate how further refined features may also be extracted from the analytic and antianalytic components. We then evaluated the feature extraction procedure on the Aurora 2 task where noise corruption is synthetic. For clean training, (compared to the mel-cepstrum front end, with 5 mixture HMM back-end) our AIF/ALE front end achieves an average improvement of 13.97% with set A and 17.92% improvement with set B and -31.72% (negative) 'improvement' with set C. The overall improvement in accuracy rates for clean training is 7.97%. Although the improvements are modest, the novelty of the front-end and its potential for future enhancements are our strengths.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on  (Volume:2 )

Date of Conference:

9-12 Nov. 2003