Cart (Loading....) | Create Account
Close category search window
 

Iterative joint source/channel decoding for JPEG2000

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lingling Pu ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; Zhenyu Wu ; Bilgin, A. ; Marcellin, M.W.
more authors

A framework for iterative joint source-channel decoding of JPEG2000 codestreams is presented in this paper. At the encoder, JPEG2000 is used to perform source coding with certain error resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. The decoding is carried out jointly in an iterative fashion. Our results indicate that the proposed method improves the convergence rate as well as the overall system performance.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on  (Volume:2 )

Date of Conference:

9-12 Nov. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.