Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Tracking rolling leukocytes with motion gradient vector flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ray, N. ; Dept. of Electr. & Comput. Eng., Virginia Univ., Charlottesville, VA, USA ; Acton, S.T.

Recording rolling leukocyte velocities from intravital microscopic video imagery is important to inflammation research and drug validation. Since manual tracking is excessively time consuming, an automated method is desired. This paper illustrates an active contour based automated tracking method, where we propose a novel external force to guide the active contour by taking the flow direction into account. The construction of the proposed force field, referred to as motion gradient vector flow (MGVF), is accomplished by minimizing an energy functional involving the motion direction, and the image gradient magnitude. The tracking experiments demonstrate that MGVF can be used to track both slow and fast leukocytes, whereas the basic gradient vector flow (GVF) is suitable for tracking slow leukocytes.

Published in:

Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on  (Volume:2 )

Date of Conference:

9-12 Nov. 2003