By Topic

A statistics-guided progressive RAST algorithm for peak template matching in GCxGC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mingtian Ni ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Reichenbach, S.E.

Comprehensive two-dimensional gas chromatography (GCxGC) is an emerging technology for chemical separation. Chemical identification is one of the critical tasks in GCxGC analysis. Peak template matching is a technique for automatic chemical identification. Peak template matching can be formulated as a point pattern matching problem. This paper proposes a progressive RAST algorithm to solve the problem. Search space pruning techniques based on peak location distributions and transformation distributions are also investigated for guided search. Experiments on seven real data sets indicate that the new techniques are effective.

Published in:

Statistical Signal Processing, 2003 IEEE Workshop on

Date of Conference:

28 Sept.-1 Oct. 2003