Cart (Loading....) | Create Account
Close category search window
 

A deep parametric study of resistor-loaded bow-tie antennas for ground-penetrating radar applications using FDTD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Uduwawala, D. ; Sweden & the Fac. of Eng., Univ. of Peradeniya, Sri Lanka ; Norgren, M. ; Fuks, P. ; Gunawardena, A.W.

Resistor-loaded bow-tie antennas are analyzed thoroughly to find out their performance on ground-penetrating radar (GPR) applications. The analysis is done with the finite-difference time-domain (FDTD) technique. The antenna is pulse driven and enclosed in a rectangular conducting cavity. The ability to detect a buried conducting sheet using two such identical antennas for transmitting and receiving is investigated. Simulations are carried out for various antenna parameters like end resistor values, flare angle, and antenna length. The gap between the two antennas and their height above the ground are also varied. Moreover, the results are obtained for different sizes, depths, and positions of the buried sheet. It is studied how the broadband impedance characteristics and better target discrimination with low clutter can be achieved by optimally selecting these antenna parameters. Also, it is shown that apart from the total parallel end resistance, the individual end resistor values and the number of resistors connected have no significant effect on the input impedance and the received signal.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.