By Topic

An adaptive Gaussian model for satellite image deblurring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jalobeanu, A. ; Ariana-Joint Res. Group, CNRS/INRIA/UNSA, Sophia Antipolis, France ; Blanc-Feraud, L. ; Zerubia, J.

The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Since real satellite data show spatially variant characteristics, we propose here to use an inhomogeneous model. We use the maximum likelihood estimator (MLE) to estimate its parameters and we show that the MLE computed on the corrupted image is not suitable for image deconvolution because it is not robust to noise. We then show that the estimation is correct only if it is made from the original image. Since this image is unknown, we need to compute an approximation of sufficiently good quality to provide useful estimation results. Such an approximation is provided by a wavelet-based deconvolution algorithm. Thus, a hybrid method is first used to estimate the space-variant parameters from this image and then to compute the regularized solution. The obtained results on high resolution satellite images simultaneously exhibit sharp edges, correctly restored textures, and a high SNR in homogeneous areas, since the proposed technique adapts to the local characteristics of the data.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 4 )