Cart (Loading....) | Create Account
Close category search window
 

Physical experimentation with prefetching helper threads on Intel's hyper-threaded processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Dongkeun Kim ; Microarchitecture Res. Lab., Intel Corp., USA ; Liao, S.S.-W. ; Wang, P.H. ; del Cuvillo, J.
more authors

Pre-execution techniques have received much attention as an effective way of prefetching cache blocks to tolerate the ever-increasing memory latency. A number of pre-execution techniques based on hardware, compiler, or both have been proposed and studied extensively by researchers. They report promising results on simulators that model a simultaneous multithreading (SMT) processor. We apply the helper threading idea on a real multithreaded machine, i.e., Intel Pentium 4 processor with hyper-threading technology, and show that indeed it can provide wall-clock speedup on real silicon. To achieve further performance improvements via helper threads, we investigate three helper threading scenarios that are driven by automated compiler infrastructure, and identify several key challenges and opportunities for novel hardware and software optimizations. Our study shows a program behavior changes dynamically during execution. In addition, the organizations of certain critical hardware structures in the hyper-threaded processors are either shared or partitioned in the multithreading mode and thus, the tradeoffs regarding resource contention can be intricate. Therefore, it is essential to judiciously invoke helper threads by adapting to the dynamic program behavior so that we can alleviate potential performance degradation due to resource contention. Moreover, since adapting to the dynamic behavior requires frequent thread synchronization, having light-weight thread synchronization mechanisms is important.

Published in:

Code Generation and Optimization, 2004. CGO 2004. International Symposium on

Date of Conference:

20-24 March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.