By Topic

Robust and frequency-adaptive measurement of peak value

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karimi-Ghartemani, M. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Iravani, M.R.

A new approach for measuring the peak value of the fundamental component of a distorted sinusoidal signal for power system applications is presented. The method is applicable to single-phase as well as three-phase systems. While maintaining structural simplicity, the proposed approach is highly robust with respect to noise and distortion due to disturbances and unbalanced conditions of the system. The method is also highly tolerant of uncertainties in the setting of its internal parameters. The salient feature of the proposed approach is its capability of adapting to the variations in the center frequency of the input signal. The method is suitable for environments that frequency excursions are experienced and conventional discrete Fourier transform (DFT)-based methods do not provide satisfactory results. Speed and accuracy of the response can also be controlled. Structural simplicity and robustness of the proposed scheme make it well suited for digital implementation on software and hardware platforms. Performance of the proposed method is presented based on simulation studies in the MATLAB environment and an experimental setup.

Published in:

Power Delivery, IEEE Transactions on  (Volume:19 ,  Issue: 2 )