By Topic

Adaptive trellis-coded modulation for bandlimited meteor burst channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. M. Jacobsmeyer ; Ensco Inc., Colorado Springs, CO, USA

The throughput performances of three adaptive information rate techniques on the bandlimited meteor burst channel are investigated. Closed-form expressions for throughput are derived based on the channel model commonly used in the literature. The throughput performance is compared to the conventional fixed information rate modem and upper bounds on throughput improvement over the fixed rate modem are derived. It is shown that an adaptive technique that uses trellis-coded modulation (TCM) with three phase-shift keyed (PSK) signal sets can increase throughput over the conventional fixed rate modem by more than a factor of 3. Data from the US Air Force High Latitude Meteor-Scatter Test Bed confirm the superiority of the adaptive TCM technique. A practical implementation is suggested that uses a single rate 1/2 convolutional code for all three PSK signal sets. The use of this single code, versus the three best Ungerboeck codes, results in a throughput loss of less than 2%. An expression for the theoretical information capacity of the bandlimited meteor burst channel is derived

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:10 ,  Issue: 3 )