Cart (Loading....) | Create Account
Close category search window
 

Dynamic model and experimental investigation of a pneumatic proportional pressure valve

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sorli, M. ; Dept. of Mech., Politecnico di Torino, Turin, Italy ; Figliolini, G. ; Pastorelli, S.

A nonlinear dynamic model of a Honeywell Lucifer-type EPP3 J-21-U-100-10 (now Parker P3P-R) pneumatic proportional pressure valve is formulated by modeling the valve's main internal mechatronic devices in order to simulate its dynamic behavior in the time and frequency domains, for several operating conditions and different downstream loads. Mechatronic design and functionality of this valve are carefully analyzed by considering the conditions of its internal devices for each of the three standard working configurations of a three-way proportional valve. The main physical parameters introduced in formulating the dynamic model were identified by means of an experimental investigation. Finally, the experimental and simulated diagrams in the time and frequency domains are compared in order to validate the proposed model, which can be used as a general approach for modeling any pneumatic proportional pressure valve featuring a similar mechatronic design and internal structure.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.