By Topic

Modeling and deadlock control of automated guided vehicle systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naiqi Wu ; Dept. of Mechatronics Eng., Guangdong Univ., Guangzhou, China ; MengChu Zhou

This paper presents a colored resource-oriented Petri net (CROPN) modeling method to deal with conflict and deadlock arising in automated guided vehicles (AGV) systems. It can handle both bidirectional and unidirectional paths. The former offer additional flexibility, efficiency, and cost saving when compared with the latter. Yet, they exhibit more challenging AGV management problems. Unlike jobs that can enter and leave automated manufacturing systems, AGVs always stay in the system. By modeling nodes with places and lanes with transitions, the proposed method can construct CROPN models for changing AGV routes. A control policy suitable for real-time implementation is presented.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:9 ,  Issue: 1 )