By Topic

Generalized B-spline subdivision-surface wavelets for geometry compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bertram, M. ; Fachbereich Inf., Kaiserslautern Univ., Germany ; Duchaineau, M.A. ; Hamann, B. ; Joy, K.I.

We present a new construction of lifted biorthogonal wavelets on surfaces of arbitrary two-manifold topology for compression and multiresolution representation. Our method combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our wavelet transform are local lifting operations performed on polygonal meshes with subdivision hierarchy. Starting with a coarse, irregular polyhedral base mesh, our transform creates a subdivision hierarchy of meshes converging to a smooth limit surface. At every subdivision level, geometric detail is expanded from wavelet coefficients and added to the surface. We present wavelet constructions for bilinear, bicubic, and biquintic B-spline subdivision. While the bilinear and bicubic constructions perform well in numerical experiments, the biquintic construction turns out to be unstable. For lossless compression, our transform is computed in integer arithmetic, mapping integer coordinates of control points to integer wavelet coefficients. Our approach provides a highly efficient and progressive representation for complex geometries of arbitrary topology.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:10 ,  Issue: 3 )