By Topic

Concurrent Hierarchical Fault Simulation: A Performance Model and Two Optimizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. A. Rogers ; Department of Electrical and Computer Engineering, University of Texas, Austin, TX, USA ; J. F. Guzolek ; J. A. Abraham

This paper presents the technique of concurrent hierarchical fault simulation, a performance model, and two hierarchical optimization techniques to enhance fault simulator performance. The mechanisms for these enhancements are demonstrated with a performance model and are validated experimentally via CHIEFS, the Concurrent Hierarchical and Extensible Fault Simulator, and WRAP, an offline hierarchy compressor. Hieararchy-based fault partitioning and circuit reconfiguration are shown to improve simulator performance to O(n log n) under appropriate conditions. A decoupled fault modeling technique permits further performance improvements via a bottom-up hierarchy compression technique where macros of primitives are converted to single primitives. When combined, these techniques have produced a factor of 180 speedup on a mantissa multiplier. The performance model indicates that the speedup should increase with circuit size.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:6 ,  Issue: 5 )