By Topic

On hierarchical palmprint coding with multiple features for personal identification in large databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. You ; Dept. of Comput., Hong Kong Polytech. Univ., China ; Wai-Kin Kong ; D. Zhang ; King Hong Cheung

Automatic personal identification is a significant component of security systems with many challenges and practical applications. The advances in biometric technology have led to the very rapid growth in identity authentication. This paper presents a new approach to personal identification using palmprints. To tackle the key issues such as feature extraction, representation, indexing, similarity measurement, and fast search for the best match, we propose a hierarchical multifeature coding scheme to facilitate coarse-to-fine matching for efficient and effective palmprint verification and identification in a large database. In our approach, four-level features are defined: global geometry-based key point distance (Level-1 feature), global texture energy (Level-2 feature), fuzzy "interest" line (Level-3 feature), and local directional texture energy (Level-4 feature). In contrast to the existing systems that employ a fixed mechanism for feature extraction and similarity measurement, we extract multiple features and adopt different matching criteria at different levels to achieve high performance by a coarse-to-fine guided search. The proposed method has been tested in a database with 7752 palmprint images from 386 different palms. The use of Level-1, Level-2, and Level-3 features can remove candidates from the database by 9.6%, 7.8%, and 60.6%, respectively. For a system embedded with an Intel Pentium III processor (500 MHz), the execution time of the simulation of our hierarchical coding scheme for a large database with 106 palmprint samples is 2.8 s while the traditional sequential approach requires 6.7 s with 4.5% verification equal error rate. Our experimental results demonstrate the feasibility and effectiveness of the proposed method.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:14 ,  Issue: 2 )