By Topic

Statistical approach to X-ray CT imaging and its applications in image analysis. II. A new stochastic model-based image segmentation technique for X-ray CT image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei, T. ; Dept. of Radiat. Oncology, Maryland Univ., Baltimore, MD, USA ; Sewchand, W.

For pt.I, see ibid., vol.11, no.1, p.53.61 (1992). Based on the statistical properties of X-ray CT imaging given in pt.I, an unsupervised stochastic model-based image segmentation technique for X-ray CT images is presented. This technique utilizes the finite normal mixture distribution and the underlying Gaussian random field (GRF) as the stochastic image model. The number of image classes in the observed image is detected by information theoretical criteria (AIC or MDL). The parameters of the model are estimated by expectation-maximization (EM) and classification-maximization (CM) algorithms. Image segmentation is performed by a Bayesian classifier. Results from the use of simulated and real X-ray computerized tomography (CT) image data are presented to demonstrate the promise and effectiveness of the proposed technique

Published in:

Medical Imaging, IEEE Transactions on  (Volume:11 ,  Issue: 1 )