By Topic

A permanent-magnet synchronous motor servo drive using self-constructing fuzzy neural network controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Taiwan, Taiwan ; Chih-Hong Lin

A self-constructing fuzzy neural network (SCFNN) is proposed to control the rotor position of a permanent-magnet synchronous motor (PMSM) drive to track periodic step and sinusoidal reference inputs in this study. The structure and the parameter learning phases are preformed concurrently and online in the SCFNN. The structure learning is based on the partition of input space, and the parameter learning is based on the supervised gradient descent method using a delta adaptation law. Several simulation and experimental results are provided to demonstrate the effectiveness of the proposed SCFNN control stratagem under the occurrence of parameter variations and external disturbance.

Published in:

IEEE Transactions on Energy Conversion  (Volume:19 ,  Issue: 1 )