Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Advanced fault diagnosis of a DC motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hajiaghajani, M. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Toliyat, H.A. ; Panahi, I.M.S.

This paper presents a model of the DCc motor with an eccentric rotor. The winding function theory shows the effect of eccentricity fault on the motor inductances and the simulation is done using a nonsymmetric air-gap function. A modified equation is presented to show the existence of rotor slot harmonics in the DC motor current. To detect the eccentricity fault, a pattern recognition technique is utilized. The proposed algorithm works at steady state and uses armature current as input. The rotor speed is needed in order to provide the appropriate feature for the classifier. Therefore, rotor speed is estimated from the armature current using the commutation harmonics. The experimental results obtained from a 1/3-hp shunt DC motor verifies the proposed method. In order to cover different motor conditions, data are collected at different shaft speeds for both a healthy dc motor and a dc motor with an unbalanced load which exhibits static eccentricity.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:19 ,  Issue: 1 )