By Topic

Fuzzy repertory table: a method for acquiring knowledge about input variables to machine learning algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. J. Castro-Schez ; Dept. of Comput. Sci., Univ. of Castilla-La Mancha, Spain ; J. L. Castro ; J. M. Zurita

In this paper, we develop a technique for acquiring the finite set of attributes or variables which the expert uses in a classification problem for characterising and discriminating a set of elements. This set will constitute the schema of a training data set to which an inductive learning algorithm will be applied. The technique developed uses ideas taken from psychology, in particular from Kelly's Personal Construct Theory. While we agree that Kelly's repertory grid technique is an efficient way to do this, it has several disadvantages which we shall try to solve by using a fuzzy repertory table. With the suggested technique, we aim to obtain the set of attributes and values which the expert can use to "measure" the object type (class) on the classification problem in some way. We will also acquire some general rules to identify the expert's evident knowledge; these rules will comprise concepts belonging to their conceptual structure.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:12 ,  Issue: 1 )